Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 675
Filtrar
1.
Cardiovasc Res ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38639325

RESUMEN

AIMS: Aortic aneurysm and dissection (AAD) is caused by the progressive loss of aortic smooth muscle cells (SMCs) and is associated with a high mortality rate. Identifying the mechanisms underlying SMC apoptosis is crucial for preventing AAD. Neutrophil cytoplasmic factor 1 (Ncf1) is essential in reactive oxygen species (ROS) production and SMC apoptosis; Ncf1 absence leads to autoimmune diseases and chronic inflammation. Here, the role of Ncf1 in angiotensin II (Ang II)-induced AAD was investigated. METHODS AND RESULTS: Ncf1 expression increased in injured SMCs. Bioinformatics analysis identified Ncf1 as a mediator of AAD-associated SMC damage. Ncf1 expression is positively correlated with DNA replication and repair in SMCs of AAD aortas. AAD incidence increased in Ang II-challenged Sm22CreNcf1fl mice. Transcriptomics showed that Ncf1 knockout activated the stimulator of interferon genes (STING) and cell death pathways. The effects of Ncf1 on SMC death and the STING pathway in vitro were examined. Ncf1 regulated the hydrogen peroxide-mediated activation of the STING pathway and inhibited SMC apoptosis. Mechanistically, Ncf1 knockout promoted the ubiquitination of nuclear factor erythroid 2-related factor 2 (NRF2), thereby inhibiting the negative regulatory effect of NRF2 on the stability of STING mRNA and ultimately promoting STING expression. Additionally, the pharmacological inhibition of STING activation prevented AAD progression. CONCLUSIONS: Ncf1 deficiency in SMCs exacerbated Ang II-induced AAD by promoting NRF2 ubiquitination and degradation and activating the STING pathway. These data suggest that Ncf1 may be a potential therapeutic target for AAD treatment.

2.
Phys Med Biol ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640915

RESUMEN

OBJECTIVE: Beam hardening (BH) artifacts in computed tomography (CT) images originate from the polychromatic nature of X-ray photons. In a CT system with a bowtie filter, residual BH artifacts remain when polynomial fits are used. These artifacts lead to worse visuals, reduced contrast, and inaccurate CT numbers. This work proposes a pixel-by-pixel correction (PPC) method to reduce the residual BH artifacts caused by a bowtie filter. Approach: The energy spectrum for each pixel at the detector after the photons pass through the bowtie filter was calculated. Then, the spectrum was filtered through a series of water slabs with different thicknesses. The polychromatic projection corresponding to the thickness of the water slab for each detector pixel could be obtained. Next, we carried out a water slab experiment with a mono energy E = 69 keV to get the monochromatic projection. The polychromatic and monochromatic projections were then fitted with a 2nd-order polynomial. The proposed method was evaluated on digital phantoms in a virtual CT system and phantoms in a real CT machine. Main results: In the case of a virtual CT system, the standard deviation of the line profile was reduced by 23.8%, 37.3%, and 14.3%, respectively, in the water phantom with different shapes. The difference of the linear attenuation coefficients (LAC) in the central and peripheral areas of an image was reduced from 0.010cm-1to 0.003cm-1and 0.007cm-1to 0 in the biological tissue phantom and human phantom, respectively. The method was also validated using CT projection data obtained from Activion16. The difference in the LAC in the central and peripheral areas can be reduced by a factor of two. Significance: The proposed PPC method can successfully remove the cupping artifacts in both virtual and authentic CT images. The scanned object's shapes and materials do not affect the technique. .

4.
Clin Pharmacol Ther ; 115(5): 954-964, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38459425

RESUMEN

The clinical benefits of statins have well-established and recognized worldwide. Although statins are well-tolerated generally, however, the report of statin-related adverse event and statin intolerance are common in China, which results in insufficient use of statins and poor adherence. The main reason may be attributed to confusions or misconceptions in the clinical diagnosis and management in China, including the lack of unified definitions and diagnostic standards, broad grasp of diagnosis, and unscientific management strategies. Based on that, this consensus carefully summarized the statin-related gene polymorphism and statin usage issue among Chinese population, and comprehensively reviewed global research data on statin intolerance, referenced guidelines, and consensus literature on statin intolerance in foreign and different regions, proposes an appropriate and easy to implement statin intolerance definition as well as corresponding diagnostic criteria and management strategies for Chinese clinicians, in order to improve the clinical application of statin drugs and enhance the prevention and treatment level of atherosclerotic cardiovascular disease in China.


Asunto(s)
Enfermedades Cardiovasculares , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Consenso , Enfermedades Cardiovasculares/prevención & control , China/epidemiología
5.
Acta Pharmacol Sin ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514863

RESUMEN

Status epilepticus (SE), a serious and often life-threatening medical emergency, is characterized by abnormally prolonged seizures. It is not effectively managed by present first-line anti-seizure medications and could readily develop into drug resistance without timely treatment. In this study, we highlight the therapeutic potential of CZL80, a small molecule that inhibits caspase-1, in SE termination and its related mechanisms. We found that delayed treatment of diazepam (0.5 h) easily induces resistance in kainic acid (KA)-induced SE. CZL80 dose-dependently terminated diazepam-resistant SE, extending the therapeutic time window to 3 h following SE, and also protected against neuronal damage. Interestingly, the effect of CZL80 on SE termination was model-dependent, as evidenced by ineffectiveness in the pilocarpine-induced SE. Further, we found that CZL80 did not terminate KA-induced SE in Caspase-1-/- mice but partially terminated SE in IL1R1-/- mice, suggesting the SE termination effect of CZL80 was dependent on the caspase-1, but not entirely through the downstream IL-1ß pathway. Furthermore, in vivo calcium fiber photometry revealed that CZL80 completely reversed the neuroinflammation-augmented glutamatergic transmission in SE. Together, our results demonstrate that caspase-1 inhibitor CZL80 terminates diazepam-resistant SE by blocking glutamatergic transmission. This may be of great therapeutic significance for the clinical treatment of refractory SE.

6.
Free Radic Biol Med ; 213: 512-522, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38301975

RESUMEN

Trace metal zinc is involved in key processes of solid tumors by its antioxidant properties, while the role of zinc at the onset of esophageal squamous cell carcinoma (ESCC) remains controversial. This study aimed to determine whether zinc is associated with the ESCC and underlying molecular events involving malignant progression. Based on a case-control study, we found serum and urine zinc were decreased and correlated with ESCC progression. Thus, an in vitro model for zinc deficiency (ZD) was established, and we found that ZD contributed to the proliferation, migration, and invasion of EC109 cells. Untargeted metabolomics identified 59 upregulated metabolites and 6 downregulated metabolites, among which glycolysis and ferroptosis-related oxidation of chain fatty acids might play crucial steps in ZD-treated molecular events. Interestingly, ZD disrupted redox homeostasis and enhanced cytosolic Fe2+ of EC109 cells, while lipid peroxidation, the key marker of ferroptosis occurrence, was decreased after ZD treatment. The mechanism underlying these changes may involve ZD-enhanced ESCC glycolysis and lactate production, which confer ferroptosis resistance by inhibiting of p-AMPK and leading to the upregulation of SREBP1 and SCD1 to enhance the production of anti-ferroptosis monounsaturated fatty acids.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Ferroptosis , Desnutrición , Humanos , Carcinoma de Células Escamosas de Esófago/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Ácido Láctico , Estudios de Casos y Controles , Ferroptosis/genética , Zinc/metabolismo , Proliferación Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
7.
bioRxiv ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38260579

RESUMEN

Long interspersed element type 1 (LINE-1, L1) is an active autonomous transposable element (TE) in the human genome. The first step of L1 replication is transcription, which is controlled by an internal RNA polymerase II promoter in the 5' untranslated region (UTR) of a full-length L1. It has been shown that transcription factor YY1 binds to a conserved sequence motif at the 5' end of the human L1 5'UTR and dictates where transcription initiates but not the level of transcription. Putative YY1-binding motifs have been predicted in the 5'UTRs of two distinct mouse L1 subfamilies, Tf and Gf. Using site-directed mutagenesis, in vitro binding, and gene knockdown assays, we experimentally tested the role of YY1 in mouse L1 transcription. Our results indicate that Tf, but not Gf subfamily, harbors functional YY1-binding sites in its 5'UTR monomers. In contrast to its role in human L1, YY1 functions as a transcriptional activator for the mouse Tf subfamily. Furthermore, YY1-binding motifs are solely responsible for the synergistic interaction between monomers, consistent with a model wherein distant monomers act as enhancers for mouse L1 transcription. The abundance of YY1-binding sites in Tf elements also raise important implications for gene regulation at the genomic level.

8.
Fitoterapia ; 173: 105834, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280683

RESUMEN

The phytochemical investigation of the pericarps of Caesalpinia bonduc led to the isolation and identification of five new cassane-type alkaloids: caesalminines C - G (1-5) and six new diterpenoids: caesalbonducin K - P (6-11), along with seven known compounds (12-18). Compounds 1-5 were identified as a group of rare alkaloids possessing a tetracyclic cassane-type diterpenoid skeleton with a lactam D-ring instead of a typical furan or lactone moiety. The structures of 1-11 were elucidated on the basis of 1D and 2D NMR including HSQC, HMBC, COSY and NOESY, and other spectroscopic analyses. The cytotoxic activities of the isolated compounds were evaluated in the A431, A549 and U87MG cancer cell lines.


Asunto(s)
Alcaloides , Caesalpinia , Diterpenos , Caesalpinia/química , Estructura Molecular , Alcaloides/análisis , Espectroscopía de Resonancia Magnética , Diterpenos/química , Semillas/química
9.
Toxicol Sci ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291902

RESUMEN

Intensified sanitation practices amid the recent SARS-CoV-2 outbreak might result in the increased release of chloramine disinfectants into surface water, significantly promoting the formation of nitrosamine disinfection by-products (DBPs) in drinking water. Unfortunately, these nitrosamine DBPs exhibit significant genotoxic, carcinogenic, and mutagenic properties, while chlorinating disinfectants remain in global practice. The current review provides valuable insights into the occurrence, identification, contamination status, exposure limits, and toxicity of the new unregulated disinfection by-products (nitrosamine DBPs) in drinking water. As a result, concentrations of nitrosamine DBPs far exceed allowable limits in drinking water, and prolonged exposure has the potential to cause metabolic disorders, a critical step in tumor initiation and progression. Importantly, based on recent research, we have concluded the role of nitrosamines DBPs in different metabolic pathways. Remarkably, nitrosamine DBPs can induce chronic inflammation and initiate tumors by activating sphingolipid and polyunsaturated fatty acid metabolism. Regarding amino acid and nucleotide metabolism, nitrosamine DBPs can inhibit tryptophan (TRP) metabolism and de novo nucleotide synthesis. Moreover, inhibition of de novo nucleotide synthesis fails to repair DNA damage induced by nitrosamines. Additionally, the accumulation of lactate induced by nitrosamine DBPs may act as a pivotal signaling molecule in communication within the tumor microenvironment. However, with the advancement of tumor metabolomics, understanding the role of nitrosamine DBPs in causing cancer by inducing metabolic abnormalities significantly lags behind, and specific mechanisms of toxic effects are not clearly defined. Urgently, further studies exploring this promising area are needed.

10.
CNS Neurol Disord Drug Targets ; 23(3): 402-410, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36797610

RESUMEN

BACKGROUND: Postsynaptic density (PSD) is an electron-dense structure that contains various scaffolding and signaling proteins. Shank1 is a master regulator of the synaptic scaffold located at glutamatergic synapses, and has been proposed to be involved in multiple neurological disorders. METHODS: In this study, we investigated the role of shank1 in an in vitro Parkinson's disease (PD) model mimicked by 6-OHDA treatment in neuronal SN4741 cells. The expression of related molecules was detected by western blot and immunostaining. RESULTS: We found that 6-OHDA significantly increased the mRNA and protein levels of shank1 in SN4741 cells, but the subcellular distribution was not altered. Knockdown of shank1 via small interfering RNA (siRNA) protected against 6-OHDA treatment, as evidenced by reduced lactate dehydrogenase (LDH) release and decreased apoptosis. The results of RT-PCR and western blot showed that knockdown of shank1 markedly inhibited the activation of endoplasmic reticulum (ER) stress associated factors after 6-OHDA exposure. In addition, the downregulation of shank1 obviously increased the expression of PRDX3, which was accompanied by the preservation of mitochondrial function. Mechanically, downregulation of PRDX3 via siRNA partially prevented the shank1 knockdowninduced protection against 6-OHDA in SN4741 cells. CONCLUSION: In summary, the present study has provided the first evidence that the knockdown of shank1 protects against 6-OHDA-induced ER stress and mitochondrial dysfunction through activating the PRDX3 pathway.


Asunto(s)
Enfermedad de Parkinson , Humanos , Oxidopamina/toxicidad , Apoptosis , Proteínas , ARN Interferente Pequeño/metabolismo , Peroxiredoxina III
11.
J Allergy Clin Immunol ; 153(1): 173-181.e10, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37815782

RESUMEN

BACKGROUND: Prior studies of peanut sublingual immunotherapy (SLIT) have suggested a potential advantage with younger age at treatment initiation. OBJECTIVE: We studied the safety and efficacy of SLIT for peanut allergy in 1- to 4-year-old children. METHODS: Peanut-allergic 1- to 4-year-old children were randomized to receive 4 mg peanut SLIT versus placebo. Desensitization was assessed by double-blind, placebo-controlled food challenge (DBPCFC) after 36 months of treatment. Participants desensitized to at least 443 mg peanut protein discontinued therapy for 3 months and then underwent DBPCFC to assess for remission. Biomarkers were measured at baseline and longitudinally during treatment. RESULTS: Fifty participants (25 peanut SLIT, 25 placebo) with a median age of 2.4 years were enrolled across 2 sites. The primary end point of desensitization was met with actively treated versus placebo participants having a significantly greater median cumulative tolerated dose (4443 mg vs 143 mg), higher likelihood of passing the month 36 DBPCFC (60% vs 0), and higher likelihood of demonstrating remission (48% vs 0). The highest rate of desensitization and remission was seen in 1- to 2-year-olds, followed by 2- to 3-year-olds and 3- to 4-year-olds. Longitudinal changes in peanut skin prick testing, peanut-specific IgG4, and peanut-specific IgG4/IgE ratio were seen in peanut SLIT but not placebo participants. Oropharyngeal itching was more commonly reported by peanut SLIT than placebo participants. Skin, gastrointestinal, upper respiratory, lower respiratory, and multisystem adverse events were similar between treatment groups. CONCLUSION: Peanut SLIT safely induces desensitization and remission in 1- to 4-year-old children, with improved outcomes seen with younger age at initiation.


Asunto(s)
Hipersensibilidad al Cacahuete , Inmunoterapia Sublingual , Humanos , Preescolar , Lactante , Arachis , Desensibilización Inmunológica/efectos adversos , Administración Sublingual , Hipersensibilidad al Cacahuete/terapia , Hipersensibilidad al Cacahuete/etiología , Alérgenos , Método Doble Ciego , Inmunoglobulina G , Administración Oral
12.
Food Chem ; 439: 138116, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38064830

RESUMEN

The strong-fragrant rapeseed oil (SFRO) is a popular rapeseed oil in China with a low refining degree only degumming with hot water, which remarkably affects its storage stability. The present study compared the overall changes of physical/chemical/nutrient quality of FROs at various temperatures, light wavelengths and headspace volumes. Results showed that red light (680 nm) had a most significant adverse effect on the overall quality of SFRO with the higher correlation coefficients to PV and TOTOX of 0.71 and 0.70, and lower correlation coefficients to chlorophyll and tocopherol of -0.95 and -0.53, respectively. Further studies revealed that red light accelerated the oxidation of fragrant rapeseed oils by degrading chlorophyll to initiate the photo-oxidation process and synthesize high amount of secondary oxidation products including aliphatic and aromatic oxidized compounds from linolenic acid. These findings provided a reference to control the deterioration of FROs by preventing the transmittance of red light.


Asunto(s)
Brassica napus , Aceite de Brassica napus , Oxidación-Reducción , Tocoferoles , Clorofila , Aceites de Plantas
13.
Artículo en Inglés | MEDLINE | ID: mdl-38087975

RESUMEN

The prevalence of breast cancer as a major global cancer has underscored the importance of postoperative recovery for breast cancer patients. Among the issues, postoperative patients are prone to spinal deformities, including scoliosis, which has drawn significant attention from healthcare professionals. The primary aim of this study is to design a postoperative recovery platform for breast cancer patients that can effectively detect posture changes, provide feedback and support to medical staff, assist doctors in formulating recovery plans, and prevent spinal deformities. The feasibility of the recovery platform is also validated through experiments. The development and validation of the experimental recovery platform. The recovery platform includes instrument design, patient data collection, model training and fine-tuning, and postoperative body posture evaluation by comparing preoperative and postoperative conditions. The evaluation results are provided to doctors to facilitate the formulation of personalized postoperative recovery plans. This paper comprehensively designs and implements the recovery platform and verifies its feasibility through simulation experiments. Statistical methods were employed for the validation of the rehabilitation platform in simulated experiments, with a significance level of p < 0.05. In comparison to static assessments like CT scans, this paper introduces a dynamic detection method that provides a more insightful analysis of body posture. The experiments also demonstrate the preventive capability of this method against post-operative spinal deformities, ultimately enhancing patients' self-image, restoring their confidence, and enabling them to lead more fulfilling lives.

14.
Artículo en Inglés | MEDLINE | ID: mdl-37971439

RESUMEN

Objective: To investigate the diagnostic value of transforming growth factor-ß1 (TGF-ß1), prostate-specific antigen isomer 2 (p2PSA) combined with a prostate-specific antigen (PSA) in prostate cancer (PCa). Methods: From October 1, 2019 to September 1, 2022 we enrolled a total of 90 patients with PCa90 patients with PCa in the urology department of our hospital were selected as the PCa group, 90 patients with benign prostatic hyperplasia (BPH) were selected as the BPH group, and 90 healthy people were selected as a healthy control group. The levels of TGF-ß1, p2PSA and PSA in serum were detected, and the differences in TGF-ß1, p2PSA and PSA levels among the three groups and PCa patients with different pathological parameters were compared. Univariate and Logistic regression analyses were used to analyze the independent risk factors affecting the occurrence of PCa. With pathological results as the 'gold standard', the diagnostic efficacy of TGF-ß1, p2PSA and PSA alone and their combination for PCa was analyzed by the receiver operating characteristic (ROC) curve. Results: The levels of serum PSA, p2PSA, and TGF-ß1 in the PCa group were higher than those in the BPH group and control group (P < .001), and those in BPH group were higher than those in the control group (P < .001). The serum indexes of PCa group increased with the increase of Glerson grade and TNM stage (P < .001). The serum indexes of patients with lymph and bone metastasis were significantly higher than those without lymph and bone metastasis (P < .001). Logistic regression analysis showed that PSA, p2PSA and TGF-ß1 were independent risk factors for PCa (P < .001). The area under the ROC curve (AUC) of PSA, p2PSA, TGF-ß1 and combined detection were 0.738, 0.862, 0.821 and 0.932, respectively. The AUC of combined detection was greater than that of single detection (P < .001). Conclusion: The expression levels of serum TGF-ß1, p2PSA and PSA are related to PCa and are independent risk factors for PCa. The combined detection of the three groups can improve the diagnostic efficacy of PCa. Combined testing improves diagnostic accuracy for prostate cancer, allows for early intervention, and improves patient survival and confidence in treatment options. This will significantly improve the clinical management of prostate cancer. Future studies could explore other biomarkers or molecular indicators to further improve the accuracy of diagnosis and grading of prostate cancer. Additionally, differences between different populations and subtypes can be studied to better understand the heterogeneity of prostate cancer.

15.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(5): 1481-1485, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-37846704

RESUMEN

OBJECTIVE: To investigate the correlation of iron metabolic parameters with platelet counts in blood donors. METHODS: A total of 400 blood donors who met requirements of apheresis platelet donation were collected, and their hematological parameters were analyzed. The donors were divided into low ferritin group and normal group, the differences of hematological parameters between the two groups were compared, and the correlation of iron metabolic parameters and routine hematology parameters with platelet counts were analyzed. RESULTS: Whether male or female, low ferritin group had higher platelet counts than normal group (P < 0.01). Among the iron metabolic parameters, the platelet counts was negatively correlated with serum ferritin (SF), serum iron (SI), and transferrin saturation (TSAT) (r =-0.162, r =-0.153, r =-0.256), and positively correlated with total iron binding capacity (TIBC) and unsaturated iron binding capacity (UIBC) (r =0.219, r =0.294) in female blood donors. Platelet counts was also negatively correlated with SF, SI and TSAT (r =-0.188, r =-0.148, r =-0.224) and positively correlated with UIBC (r =0.220) in male blood donors. Among the routine hematology parameters, platelet counts was negatively correlated with mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), and reticulocyte hemoglobin equivalent (Ret-He) in female blood donors (r =-0.236, r =-0.267, r =-0.213, r =-0.284). Platelet counts was also negatively correlated with MCH, MCHC and Ret-He in male blood donors (r =-0.184, r =-0.221, r =-0.209). CONCLUSION: In blood donors with low C-reactive protein level, the lower the iron store capacity, the lower the iron utilization, and the platelet counts tends to rise.


Asunto(s)
Anemia Ferropénica , Hierro , Masculino , Humanos , Femenino , Hierro/metabolismo , Donantes de Sangre , Recuento de Plaquetas , Hemoglobinas , Ferritinas
16.
Nicotine Tob Res ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37788476

RESUMEN

INTRODUCTION: The global disease burden may be exacerbated by exposure to passive smoking (SHS), with the workplace being a primary location for such exposure. Numerous epidemiological studies have identified SHS as a risk factor for diseases affecting various systems, including cardiovascular, respiratory, immune, endocrine, and nervous systems. The conventional observational study has certain methodological constraints which can be circumvented through a Mendelian randomization (MR) study. Our MR study intends to investigate the causal link between workplace exposure to SHS and the potential associated diseases. METHODS: Summary statistics data involving European participants was sourced from three databases: the UK Biobank, the FinnGen study, and the European Bioinformatics Institute. Genetic variants linked with exposure to SHS in the workplace were identified as instrumental variables. The MR was carried out using inverse variance weighted (IVW), MR-Egger, and weighted median methods. Sensitivity tests were also undertaken within the MR to evaluate the validity of the causality. RESULTS: According to the IVW model, genetically determined atrial fibrillation (AF) and stroke [P= 6.64E-04 and 5.68E-07, odds ratio = 2.030 and 2.494, 95% confidence interval = 1.350,3.051 and 1.743,3.569] were robustly associated with exposure to SHS in the workplace. Suggestive associations were found between workplace SHS and myocardial infarction (MI), asthma, and depression. CONCLUSIONS: The MR study demonstrates that exposure to SHS in the workplace is a significant risk factor for AF and stroke in European individuals. Whether workplace exposure to SHS influences other diseases and the causality between them requires further exploration. IMPLICATIONS: This study explored the causality between exposure to SHS in the workplace and potential associated diseases in multiple systems, including MI, AF, stroke, lung cancer, asthma, allergic disease, type 2 diabetes, and depression, using a MR study. The MR study can circumvent the methodological constraints of observational studies and establish a causal relationship. The two-sample MR analysis provides evidence supporting the causal association of frequent workplace SHS with AF and stroke. Individuals exposed to SHS in the workplace may also have a heightened risk of MI, asthma, and depression. However, whether SHS affects other diseases and the causality between them requires further investigation. To our knowledge, this is the first two-sample MR study to determine the causal relationship between SHS and potential diseases. As exposure to SHS in the workplace is a prevalent issue and may contribute to a global disease burden. The reduction of exposure following the introduction of smoke-free laws has led to a decrease in the admission rate for cardiac events and an improvement in health indicators. It is crucial to further advance smoke-free policies and their implementation.

17.
Brain Res Bull ; 203: 110780, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37820952

RESUMEN

Aneurysmal subarachnoid hemorrhage (aSAH) accounts for only 5 % of all stroke cases, but carries a heavy burden of morbidity and mortality. Activity regulated cytoskeleton associated protein (Arc) is an immediate early gene (IEG)-coded postsynaptic protein that is involved in synaptic plasticity. Increasing evidence and our previous studies have shown that Arc might be involved in the pathological mechanism of various neurological diseases, such as traumatic brain injury (TBI). In this study, we investigated the level of Arc in cerebrospinal fluids (CSF) of aSAH patients and its potential role in brain damage following experimental SAH model. We found that the levels of Arc in aSAH patients' CSF positively correlated with Hunt-Hess (H&H) grades. Knockdown of endogenous Arc expression by small interfere RNA (siRNA) significantly increased brain edema and oxidative stress following SAH. The results of immunostaining in brain sections showed that knockdown of Arc enhanced activation of microglia and astrocytes. In congruent, generation of inflammatory cytokines following SAH was increased by Si-Arc transfection. The results of western blot analysis showed that knockdown of Arc inhibited the expression of Sirt1 and Nrf2, which was accompanied by decreased enzymatic activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-px). In addition, activation of sirtuin 1 (Sirt1) via agonist SRT2104 markedly decreased the brain damage and neuroinflammation induced by Arc knockdown. In conclusion, knockdown of endogenous Arc could aggravate brain damage and neuroinflammation following experimental SAH, and Arc levels in aSAH patients' CSF might be a potential indicator of brain damage and prognosis.


Asunto(s)
Lesiones Encefálicas , Hemorragia Subaracnoidea , Ratas , Animales , Humanos , Hemorragia Subaracnoidea/metabolismo , Sirtuina 1/metabolismo , Ratas Sprague-Dawley , Enfermedades Neuroinflamatorias , Encéfalo/metabolismo , Lesiones Encefálicas/metabolismo
18.
Bioresour Technol ; 388: 129783, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37722546

RESUMEN

Adsorbents with excellent physicochemical properties and green synthetic routes are desired for efficient removal of Congo red (CR) wastewater. Hence, a novel approach was proposed within this work. Biochar NCBC obtained from Medulla Tetrapanacis was synthesized through co-modification with urea/calcium chloride. NCBC exhibited an enormous surface area (750.09 m2/g) and a micro-mesoporous composite structure. Higher nitrogen content was detected on the surface of NCBC (8.17%) compared to that of urea directly modified biochar (4.63%). Nitrogen observed on the surface of NCBC was presented as graphitic N, pyrrolic N, amine N as well as pyridinic N. Kinetic and isothermal investigations revealed the active sites on NCBC to be homogeneous and bind to CR mainly by chemisorption. Calculated maximum sorption of CR on NCBC was 2512.82 mg/g basing on Langmuir model. Moreover, the practicality of NCBC was further proved by the cultivation of Nelumbo nucifera Gaertn. and Penicillium.


Asunto(s)
Rojo Congo , Contaminantes Químicos del Agua , Cloruro de Calcio , Adsorción , Urea , Carbón Orgánico/química , Nitrógeno/química , Contaminantes Químicos del Agua/química , Cinética
19.
Front Immunol ; 14: 1260688, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744379

RESUMEN

Introduction: Aortic aneurysms (AA) are prevalent worldwide with a notable absence of drug therapies. Thus, identifying potential drug targets is of utmost importance. AA often presents in the elderly, coupled with consistently raised serum inflammatory markers. Given that ageing and inflammation are pivotal processes linked to the evolution of AA, we have identified key genes involved in the inflammaging process of AA development through various bioinformatics methods, thereby providing potential molecular targets for further investigation. Methods: The transcriptome data of AA was procured from the datasets GSE140947, GSE7084, and GSE47472, sourced from the NCBI GEO database, whilst gene data of ageing and inflammation were obtained from the GeneCards Database. To identify key genes, differentially expressed analysis using the "Limma" package and WGCNA were implemented. Protein-protein intersection (PPI) analysis and machine learning (ML) algorithms were employed for the screening of potential biomarkers, followed by an assessment of the diagnostic value. Following the acquisition of the hub inflammaging and AA-related differentially expressed genes (IADEGs), the TFs-mRNAs-miRNAs regulatory network was established. The CIBERSORT algorithm was utilized to investigate immune cell infiltration in AA. The correlation of hub IADEGs with infiltrating immunocytes was also evaluated. Lastly, wet laboratory experiments were carried out to confirm the expression of hub IADEGs. Results: 342 and 715 AA-related DEGs (ADEGs) recognized from GSE140947 and GSE7084 datasets were procured by intersecting the results of "Limma" and WGCNA analyses. After 83 IADEGs were obtained, PPI analysis and ML algorithms pinpointed 7 and 5 hub IADEGs candidates respectively, and 6 of them demonstrated a high diagnostic value. Immune cell infiltration outcomes unveiled immune dysregulation in AA. In the wet laboratory experiments, 3 hub IADEGs, including BLNK, HLA-DRA, and HLA-DQB1, finally exhibited an expression trend in line with the bioinformatics analysis result. Discussion: Our research identified three genes - BLNK, HLA-DRA, and HLA-DQB1- that play a significant role in promoting the development of AA through inflammaging, providing novel insights into the future understanding and therapeutic intervention of AA.


Asunto(s)
Aneurisma de la Aorta , Vacunas contra el Cáncer , Anciano , Humanos , Cadenas alfa de HLA-DR , Genes MHC Clase II , Biología Computacional , Inflamación/genética
20.
J Hypertens ; 41(10): 1645-1652, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37642593

RESUMEN

BACKGROUND: This study aimed to explore whether 99mTc-radiolabeled fibroblast activation protein inhibitor (99mTc-HFAPi) imaging can detect early myocardial fibrosis in the hypertensive heart. METHODS: In the experimental model, spontaneously hypertensive rats (SHRs) and age-matched Wistar Kyoto rats (WKYs) were randomly divided into three groups (8, 16, and 28 weeks). The animals underwent 99mTc-HFAPi imaging and echocardiography. Autoradiography and histological analyses were performed in the left ventricle. The mRNA and protein expression level of the fibroblast activation protein (FAP) and collagen I were measured using quantitative PCR and western blot. In the clinical investigation, a total of 106 patients with essential hypertension and 20 gender-matched healthy controls underwent 99mTc-HFAPi imaging and echocardiography. RESULTS: In-vivo and in-vitro autographic images demonstrated diffusely enhanced 99mTc-HFAPi uptake in the SHR heart starting at week 8, before irreversible collagen deposition. The mRNA and protein levels of FAP in SHRs began to increase from week 8, whereas changes in collagen I levels were not detected until week 28. In the clinical investigation, even in hypertensive patients with normal diastolic indicators, normal left ventricular geometry, and normal global longitudinal strain (GLS), the prevalence of increased 99mTc-HFAPi uptake reached 34, 41, and 20%, respectively, indicating that early fibrogenesis precedes structural and functional myocardial abnormalities. CONCLUSION: In hypertension, 99mTc-HFAPi imaging can detect early fibrotic process before myocardial functional and structural changes.


Asunto(s)
Corazón , Hipertensión , Ratas , Animales , Ratas Endogámicas WKY , Corazón/diagnóstico por imagen , Hipertensión/complicaciones , Hipertensión/diagnóstico por imagen , Miocardio , Ventrículos Cardíacos , Colágeno Tipo I
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...